Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 19 de 19
Filter
Add more filters










Publication year range
1.
Phys Rev Lett ; 132(16): 166001, 2024 Apr 19.
Article in English | MEDLINE | ID: mdl-38701475

ABSTRACT

A key challenge in materials discovery is to find high-temperature superconductors. Hydrogen and hydride materials have long been considered promising materials displaying conventional phonon-mediated superconductivity. However, the high pressures required to stabilize these materials have restricted their application. Here, we present results from high-throughput computation, considering a wide range of high-symmetry ternary hydrides from across the periodic table at ambient pressure. This large composition space is then reduced by considering thermodynamic, dynamic, and magnetic stability before direct estimations of the superconducting critical temperature. This approach has revealed a metastable ambient-pressure hydride superconductor, Mg_{2}IrH_{6}, with a predicted critical temperature of 160 K, comparable to the highest temperature superconducting cuprates. We propose a synthesis route via a structurally related insulator, Mg_{2}IrH_{7}, which is thermodynamically stable above 15 GPa, and discuss the potential challenges in doing so.

2.
Nature ; 626(8001): 984-989, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38326619

ABSTRACT

Controlled charge flows are fundamental to many areas of science and technology, serving as carriers of energy and information, as probes of material properties and dynamics1 and as a means of revealing2,3 or even inducing4,5 broken symmetries. Emerging methods for light-based current control5-16 offer particularly promising routes beyond the speed and adaptability limitations of conventional voltage-driven systems. However, optical generation and manipulation of currents at nanometre spatial scales remains a basic challenge and a crucial step towards scalable optoelectronic systems for microelectronics and information science. Here we introduce vectorial optoelectronic metasurfaces in which ultrafast light pulses induce local directional charge flows around symmetry-broken plasmonic nanostructures, with tunable responses and arbitrary patterning down to subdiffractive nanometre scales. Local symmetries and vectorial currents are revealed by polarization-dependent and wavelength-sensitive electrical readout and terahertz (THz) emission, whereas spatially tailored global currents are demonstrated in the direct generation of elusive broadband THz vector beams17. We show that, in graphene, a detailed interplay between electrodynamic, thermodynamic and hydrodynamic degrees of freedom gives rise to rapidly evolving nanoscale driving forces and charge flows under the extremely spatially and temporally localized excitation. These results set the stage for versatile patterning and optical control over nanoscale currents in materials diagnostics, THz spectroscopies, nanomagnetism and ultrafast information processing.

3.
Light Sci Appl ; 12(1): 133, 2023 Jun 01.
Article in English | MEDLINE | ID: mdl-37258515

ABSTRACT

Nonlinear optical spectroscopies are powerful tools for investigating both static material properties and light-induced dynamics. Terahertz (THz) emission spectroscopy has emerged in the past several decades as a versatile method for directly tracking the ultrafast evolution of physical properties, quasiparticle distributions, and order parameters within bulk materials and nanoscale interfaces. Ultrafast optically-induced THz radiation is often analyzed mechanistically in terms of relative contributions from nonlinear polarization, magnetization, and various transient free charge currents. While this offers material-specific insights, more fundamental symmetry considerations enable the generalization of measured nonlinear tensors to much broader classes of systems. We thus frame the present discussion in terms of underlying broken symmetries, which enable THz emission by defining a system directionality in space and/or time, as well as more detailed point group symmetries that determine the nonlinear response tensors. Within this framework, we survey a selection of recent studies that utilize THz emission spectroscopy to uncover basic properties and complex behaviors of emerging materials, including strongly correlated, magnetic, multiferroic, and topological systems. We then turn to low-dimensional systems to explore the role of designer nanoscale structuring and corresponding symmetries that enable or enhance THz emission. This serves as a promising route for probing nanoscale physics and ultrafast light-matter interactions, as well as facilitating advances in integrated THz systems. Furthermore, the interplay between intrinsic and extrinsic material symmetries, in addition to hybrid structuring, may stimulate the discovery of exotic properties and phenomena beyond existing material paradigms.

4.
Nanotechnology ; 33(42)2022 Jul 26.
Article in English | MEDLINE | ID: mdl-35772308

ABSTRACT

Recent advances in the growth of III-V semiconductor nanowires (NWs) hold great promise for nanoscale optoelectronic device applications. It is established that a small amount of nitrogen (N) incorporation in III-V semiconductor NWs can effectively red-shift their wavelength of operation and tailor their electronic properties for specific applications. However, understanding the impact of N incorporation on non-equilibrium charge carrier dynamics and transport in semiconducting NWs is critical in achieving efficient semiconducting NW devices. In this work, ultrafast optical pump-terahertz probe spectroscopy has been used to study non-equilibrium carrier dynamics and transport in Te-doped GaAsSb and dilute nitride GaAsSbN NWs, with the goal of correlating these results with electrical characterization of their equilibrium photo-response under bias and low-frequency noise characteristics. Nitrogen incorporation in GaAsSb NWs led to a significant increase in the carrier scattering rate, resulting in a severe reduction in carrier mobility. Carrier recombination lifetimes of 33 ± 1 picoseconds (ps) and 147 ± 3 ps in GaAsSbN and GaAsSb NWs, respectively, were measured. The reduction in the carrier lifetime and photoinduced optical conductivities are due to the presence of N-induced defects, leading to deterioration in the electrical and optical characteristics of dilute nitride NWs relative to the non-nitride NWs. Finally, we observed a very fast rise time of âˆ¼2 ps for both NW materials, directly impacting their potential use as high-speed photodetectors.

5.
ACS Appl Mater Interfaces ; 14(9): 11962-11970, 2022 Mar 09.
Article in English | MEDLINE | ID: mdl-35226475

ABSTRACT

Relaxor ferroelectrics are important in technological applications due to strong electromechanical response, energy storage capacity, electrocaloric effect, and pyroelectric energy conversion properties. Current efforts to discover and design materials in this class generally rely on substitutional doping as slight changes to local compositional order can significantly affect the Curie temperature, morphotropic phase boundary, and electromechanical responses. In this work, we demonstrate that moving to the strong limit of compositional complexity in an ABO3 perovskite allows stabilization of relaxor responses that do not rely on a single narrow phase transition region. Entropy-assisted synthesis approaches are utilized to synthesize single-crystal Ba(Ti0.2Sn0.2Zr0.2Hf0.2Nb0.2)O3 [Ba(5B)O] films. The high levels of configurational disorder present in this system are found to influence dielectric relaxation, phase transitions, nanopolar domain formation, and Curie temperature. Temperature-dependent dielectric, Raman spectroscopy, and second-harmonic generation measurements reveal multiple phase transitions, a high Curie temperature of 570 K, and the relaxor ferroelectric nature of Ba(5B)O films. The first-principles theory calculations are used to predict possible combinations of cations to design relaxor ferroelectrics and quantify the relative feasibility of synthesizing these highly disordered single-phase perovskite systems. The ability to stabilize single-phase perovskites with various cations on the B-sites offers possibilities for designing high-performance relaxor ferroelectric materials for piezoelectric, pyroelectric, and electrocaloric applications.

6.
Nano Lett ; 21(23): 9930-9938, 2021 Dec 08.
Article in English | MEDLINE | ID: mdl-34797671

ABSTRACT

Recent advances in emerging atomically thin transition metal dichalcogenide semiconductors with strong light-matter interactions and tunable optical properties provide novel approaches for realizing new material functionalities. Coupling two-dimensional semiconductors with all-dielectric resonant nanostructures represents an especially attractive opportunity for manipulating optical properties in both the near-field and far-field regimes. Here, by integrating single-layer WSe2 and titanium oxide (TiO2) dielectric metasurfaces with toroidal resonances, we realized robust exciton emission enhancement over 1 order of magnitude at both room and low temperatures. Furthermore, we could control exciton dynamics and annihilation by using temperature to tailor the spectral overlap of excitonic and toroidal resonances, allowing us to selectively enhance the Purcell effect. Our results provide rich physical insight into the strong light-matter interactions in single-layer TMDs coupled with toroidal dielectric metasurfaces, with important implications for optoelectronics and photonics applications.

7.
J Phys Chem Lett ; 11(19): 8430-8436, 2020 Oct 01.
Article in English | MEDLINE | ID: mdl-32902990

ABSTRACT

Controlling the photoexcited properties and behavior of hybrid perovskites by halide doping has the potential to impact a wide range of emerging technologies, including solar cells and radiation detectors. Crystalline samples of methylammonium lead bromide substituted with chlorine (MAPbBr3-xClx) were examined by transient reflectivity spectroscopy and nonadiabatic molecular dynamics simulations. At picosecond time scales, the addition of chlorine to the perovskite crystal increased the observed rate of hot carrier cooling and the calculated electron-phonon coupling constants. Chlorine-doped samples also exhibit a slower surface recombination velocity and a smaller ambipolar mobility.

8.
Nanoscale ; 12(35): 18193-18199, 2020 Sep 21.
Article in English | MEDLINE | ID: mdl-32856672

ABSTRACT

Inducing new phases in thick films via vertical lattice strain is one of the critical advantages of vertically aligned nanocomposites (VANs). In SrTiO3 (STO), the ground state is ferroelastic, and the ferroelectricity in STO is suppressed by the orthorhombic transition. Here, we explore whether vertical lattice strain in three-dimensional VANs can be used to induce new ferroelectric phases in SrTiO3:MgO (STO:MgO) VAN thin films. The STO:MgO system incorporates ordered, vertically aligned MgO nanopillars into a STO film matrix. Strong lattice coupling between STO and MgO imposes a large lattice strain in the STO film. We have investigated ferroelectricity in the STO phase, existing up to room temperature, using piezoresponse force microscopy, phase field simulation and second harmonic generation. We also serendipitously discovered the formation of metastable TiO nanocores in MgO nanopillars embedded in the STO film matrix. Our results emphasize the design of new phases via vertical epitaxial strain in VAN thin films.

9.
Nanoscale ; 12(18): 10284-10291, 2020 May 14.
Article in English | MEDLINE | ID: mdl-32363371

ABSTRACT

Combining a plasmonic metal, such as gold, with other popular catalysts, such as Ni or Pt, can extend its benefits to many energy-extensive reactions catalyzed by those metals. The efficiency of a plasmon-enhanced catalytic reaction is mainly determined by the light absorption cross section and the photoexcited charge carrier relaxation dynamics of the nanoparticles. We have investigated the charge carrier relaxation dynamics of gold/nickel (Au/Ni) and gold/platinum (Au/Pt) bimetallic nanoparticles. We found that the addition of Ni or Pt to gold can reduce light absorption in gold nanoparticles. However, electron-phonon coupling rates of Au/Ni and Au/Pt nanoparticles are significantly faster than that of pure Au nanoparticles. This is due to the fact that both Ni and Pt possess significantly larger electron-phonon coupling constants and higher densities of states near the Fermi level in comparison with Au. Additionally, the phonon-phonon coupling rate of bimetallic Au/Pt and Au/Ni nanoparticles was significantly different from that of pure gold nanoparticles, due to the acoustic impedance mismatch at the nanoparticle/substrate interface. Our findings provide important insights into the rational design of bimetallic plasmonic catalysts.

10.
Adv Sci (Weinh) ; 6(19): 1901000, 2019 Oct 02.
Article in English | MEDLINE | ID: mdl-31592418

ABSTRACT

Room-temperature magnetoelectric (ME) coupling is developed in artificial multilayers and nanocomposites composed of magnetostrictive and electrostrictive materials. While the coupling mechanisms and strengths in multilayers are widely studied, they are largely unexplored in vertically aligned nanocomposites (VANs), even though theory has predicted that VANs exhibit much larger ME coupling coefficients than multilayer structures. Here, strong transverse and longitudinal ME coupling in epitaxial BaTiO3:CoFe2O4 VANs measured by both optical second harmonic generation and piezoresponse force microscopy under magnetic fields is reported. Phase field simulations have shown that the ME coupling strength strongly depends on the vertical interfacial area which is ultimately controlled by pillar size. The ME coupling in VANs is determined by the competition between the vertical interface coupling effect and the bulk volume conservation effect. The revealed mechanisms shed light on the physical insights of vertical interface coupling in VANs in general, which can be applied to a variety of nanocomposites with different functionalities beyond the studied ME coupling effect.

11.
Adv Sci (Weinh) ; 5(7): 1800416, 2018 Jul.
Article in English | MEDLINE | ID: mdl-30027062

ABSTRACT

Nanoscale metamaterials exhibit extraordinary optical properties and are proposed for various technological applications. Here, a new class of novel nanoscale two-phase hybrid metamaterials is achieved by combining two major classes of traditional plasmonic materials, metals (e.g., Au) and transition metal nitrides (e.g., TaN, TiN, and ZrN) in an epitaxial thin film form via the vertically aligned nanocomposite platform. By properly controlling the nucleation of the two phases, the nanoscale artificial plasmonic lattices (APLs) consisting of highly ordered hexagonal close packed Au nanopillars in a TaN matrix are demonstrated. More specifically, uniform Au nanopillars with an average diameter of 3 nm are embedded in epitaxial TaN platform and thus form highly 3D ordered APL nanoscale metamaterials. Novel optical properties include highly anisotropic reflectance, obvious nonlinear optical properties indicating inversion symmetry breaking of the hybrid material, large permittivity tuning and negative permittivity response over a broad wavelength regime, and superior mechanical strength and ductility. The study demonstrates the novelty of the new hybrid plasmonic scheme with great potentials in versatile material selection, and, tunable APL spacing and pillar dimension, all important steps toward future designable hybrid plasmonic materials.

12.
Nanoscale ; 9(35): 13052-13059, 2017 Sep 14.
Article in English | MEDLINE | ID: mdl-28836641

ABSTRACT

Magnetoelastoelectric coupling in an engineered biphasic multiferroic nanocomposite enables a novel magnetic field direction-defined propagation control of terahertz (THz) waves. These core-shell nanoparticles are comprised of a ferromagnetic cobalt ferrite core and a ferroelectric barium titanate shell. An assembly of these nanoparticles, when operated in external magnetic fields, exhibits a controllable amplitude modulation when the magnetic field is applied antiparallel to the THz wave propagation direction; yet the same assembly displays an additional phase modulation when the magnetic field is applied along the propagation direction. While field-induced magnetostriction of the core leads to amplitude modulation, phase modulation is a result of stress-mediated piezoelectricity of the outer ferroelectric shell.

13.
Nano Lett ; 16(9): 5751-5, 2016 09 14.
Article in English | MEDLINE | ID: mdl-27482629

ABSTRACT

Black TiO2 nanoparticles with a crystalline core and amorphous-shell structure exhibit superior optoelectronic properties in comparison with pristine TiO2. The fundamental mechanisms underlying these enhancements, however, remain unclear, largely due to the inherent complexities and limitations of powder materials. Here, we fabricate TiO2 homojunction films consisting of an oxygen-deficient amorphous layer on top of a highly crystalline layer, to simulate the structural/functional configuration of black TiO2 nanoparticles. Metallic conduction is achieved at the crystalline-amorphous homointerface via electronic interface reconstruction, which we show to be the main reason for the enhanced electron transport of black TiO2. This work not only achieves an unprecedented understanding of black TiO2 but also provides a new perspective for investigating carrier generation and transport behavior at oxide interfaces, which are of tremendous fundamental and technological interest.

14.
J Phys Condens Matter ; 28(12): 125603, 2016 Mar 31.
Article in English | MEDLINE | ID: mdl-26932975

ABSTRACT

We report on ultrafast optical investigations of the light-induced insulator-to-metal phase transition in vanadium dioxide with controlled disorder generated by substrate mismatch. These results reveal common dynamics of this optically-induced phase transition that are independent of this disorder. Above the fluence threshold for completing the transition to the rutile crystalline phase, we find a common time scale, independent of sample morphology, of 40.5 ± 2 ps that is consistent with nucleation and growth dynamics of the R phase from the parent M1 ground state.

15.
Sci Rep ; 6: 21601, 2016 Feb 15.
Article in English | MEDLINE | ID: mdl-26876194

ABSTRACT

We have performed ultrafast optical microscopy on single flakes of atomically thin CVD-grown molybdenum disulfide, using non-degenerate femtosecond pump-probe spectroscopy to excite and probe carriers above and below the indirect and direct band gaps. These measurements reveal the influence of layer thickness on carrier dynamics when probing near the band gap. Furthermore, fluence-dependent measurements indicate that carrier relaxation is primarily influenced by surface-related defect and trap states after above-bandgap photoexcitation. The ability to probe femtosecond carrier dynamics in individual flakes can thus give much insight into light-matter interactions in these two-dimensional nanosystems.

16.
Nano Lett ; 14(3): 1127-33, 2014 Mar 12.
Article in English | MEDLINE | ID: mdl-24484272

ABSTRACT

Ultrafast photoinduced phase transitions could revolutionize data-storage and telecommunications technologies by modulating signals in integrated nanocircuits at terahertz speeds. In quantum phase-changing materials (PCMs), microscopic charge, lattice, and orbital degrees of freedom interact cooperatively to modify macroscopic electrical and optical properties. Although these interactions are well documented for bulk single crystals and thin films, little is known about the ultrafast dynamics of nanostructured PCMs when interfaced to another class of materials as in this case to active plasmonic elements. Here, we demonstrate how a mesh of gold nanoparticles, acting as a plasmonic photocathode, induces an ultrafast phase transition in nanostructured vanadium dioxide (VO2) when illuminated by a spectrally resonant femtosecond laser pulse. Hot electrons created by optical excitation of the surface-plasmon resonance in the gold nanomesh are injected ballistically across the Au/VO2 interface to induce a subpicosecond phase transformation in VO2. Density functional calculations show that a critical density of injected electrons leads to a catastrophic collapse of the 6 THz phonon mode, which has been linked in different experiments to VO2 phase transition. The demonstration of subpicosecond phase transformations that are triggered by optically induced electron injection opens the possibility of designing hybrid nanostructures with unique nonequilibrium properties as a critical step for all-optical nanophotonic devices with optimizable switching thresholds.

17.
Opt Express ; 19(5): 3973-83, 2011 Feb 28.
Article in English | MEDLINE | ID: mdl-21369223

ABSTRACT

We study the nonlinear optical response of a fishnet structure-metamaterial all-optical switching device that exhibits two near-infrared negative-index resonances. We study and compare the nonlinear optical response at both resonances and identify transient spectral features associated with the negative index resonance. We see a significantly stronger response at the longer wavelength resonance, but identical temporal dynamics at both resonances, providing insight into separately engineering the switching time and switching ratio of such a fishnet structure metamaterial all-optical switch. We also numerically reproduce the nonlinear behavior of our device using the Drude conductivity model and a finite integration technique over wide spectral and pump fluence ranges. Thereby, we show that beyond the linear properties of the device, the magnitude of the pump-probe response is completely described by only two material parameters. These results provide insight into engineering various aspects of the nonlinear response of fishnet structure metamaterials.


Subject(s)
Optical Devices , Refractometry/instrumentation , Signal Processing, Computer-Assisted/instrumentation , Spectrum Analysis/instrumentation , Computer Simulation , Computer-Aided Design , Equipment Design , Equipment Failure Analysis , Models, Theoretical , Nonlinear Dynamics
18.
Nano Lett ; 9(10): 3565-9, 2009 Oct.
Article in English | MEDLINE | ID: mdl-19737005

ABSTRACT

We demonstrate a nanoscale, subpicosecond (ps) metamaterial device capable of terabit/second all-optical communication in the near-IR. The 600 fs response, 2 orders of magnitude faster than previously reported, is achieved by accessing a previously unused regime of high-injection level, subpicosecond carrier dynamics in the alpha-Si dielectric layer of the metamaterial. Further, we utilize a previously unrecognized, higher-order, shorter-wavelength negative-index resonance in the fishnet structure, thereby extending device functionality (via structural tuning of device dimensions) over 1.0-2.0 microm. The pump energy required to modulate a single bit is only 3 nJ over our current 700 microm(2) area device and can be easily scaled into the picoJoule regime with smaller cross sectional areas.

19.
J Phys Chem A ; 112(34): 7840-7, 2008 Aug 28.
Article in English | MEDLINE | ID: mdl-18681413

ABSTRACT

Ultrafast pump-probe spectroscopic studies have been performed on (C 5Me 5) 2U[- N=C(Ph)(CH 2Ph)] 2 and (C 5Me 5) 2Th[- N=C(Ph)(CH 2Ph)] 2 including, for the uranium complex, the first direct measurement of dynamics of electronic deactivation within a 5f-electron manifold. Evidence has been found for strong coupling between the electronic ground state and the f-electron manifold which dominates the dynamics of the excited states of the bis(ketimide) uranium complex. These also demonstrate strong singlet-f manifold coupling, which assists in the deactivation of the photoexcited state of the uranium complex, and provide information on intersystem crossing and internal conversion processes in both complexes.

SELECTION OF CITATIONS
SEARCH DETAIL
...